Structure of Sodium tert-Butoxide: a Re-refinement

By J. E. Davies
Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

and J. Kopf and E. Weiss

Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 2 Hamburg 13, Federal Republic of Germany
(Received 19 October 1981; accepted 18 March 1982)

Abstract

C}_{4} \mathrm{H}_{9} \mathrm{NaO}, M_{r}=96 \cdot 10\), trigonal, $R 3 c, a=$ 19.388 (14), $c=43.335$ (30) $\AA, U=14107 \AA^{3}, Z=$ $90, D_{c}=1.02 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=4680$. This structure has been reported [Greiser \& Weiss (1977). Chem. Ber. 110, 3388-3396] as monoclinic, space group Cc. The original Cc reflexion data have been transformed to a trigonal setting and the structure has been successfully refined in the true space group $R 3 c\left(R=0 \cdot 170, R^{\prime}=\right.$ 0.142 for 1730 reflexions). Bond lengths and angles in the $R 3 c$ structure do not differ significantly from those reported earlier for the Cc structure. The $R 3 c$ cell contains six hexameric and six nonameric $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{ONa}$ units; the centre of each unit lies on a triad axis. There is considerable rotational disorder associated with the tert-butoxy groups.

Introduction. The X-ray structure of the title compound was reported by Greiser \& Weiss (1977) as monoclinic, space group $C c, a=30.995, b=19.378$, $c=18.269 \AA, \beta=121.01^{\circ}, Z=60$. The [101] zone axis of this $C c$ cell is, however, the unique c axis of a trigonal cell with $a=19.388,{ }^{*} c=43.335 \AA, Z=90$. The Laue symmetry and the systematic absences are consistent with space groups $R 3 c$ and $R \overline{3} c$. The $C c$ structure contains no centre of symmetry and the correct space group is therefore $R 3 c$. Atomic coordinates in the trigonal structure ($x / a^{\prime}, y / b^{\prime}, z / c^{\prime}$) are related to atomic coordinates in the $C c$ structure (x / a, $y / b, z / c)$ by the equation

$$
\left(\begin{array}{c}
x / a^{\prime} \\
y / b^{\prime} \\
z / c^{\prime}
\end{array}\right)=\left(\begin{array}{rrr}
\frac{1}{3} & 1 & \frac{1}{3} \\
\frac{2}{3} & 0 & \frac{2}{3} \\
\frac{2}{3} & 0 & -\frac{1}{3}
\end{array}\right)\left(\begin{array}{c}
x / a \\
y / b \\
z / c
\end{array}\right)+\left(\begin{array}{r}
-\frac{1}{6} \\
-\frac{5}{6} \\
\frac{1}{6}
\end{array}\right)
$$

This equation was used to obtain a set of atomic coordinates for the five $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NaO}$ units which define the asymmetric unit of the trigonal $(R 3 c)$ structure. The

[^0]original $C c$ reflexion data were transformed to the $R 3 c$ setting and equivalents were averaged to give 1730 reflexions with $F>3 \sigma(F)$. Three cycles of least-squares refinement in space group $R 3 c$ were sufficient to demonstrate that the structure is indeed $R 3 c$ and that the tert-butoxy groups are rotationally disordered about the $\mathrm{O}-\mathrm{C}$ bonds. This disorder presented considerable problems during subsequent refinement cycles. The structure was finally refined by full-matrix least squares with complex neutral-atom scattering

Table 1. Atomic coordinates and isotropic thermal parameters

The first digit of each atom label indicates either hexamer(6) or nonamer (9). Atom $\mathrm{O}(x y)$ is bound to atom $\mathrm{C}(x y)$. Methyl C atoms $\mathrm{C}(x y n)(n=1,2,3)$ are bound to carbon atom $\mathrm{C}(x y)$.

	x	y	z	$U\left(\AA^{2}\right)$
$\mathrm{Na}(91)$	0.8893 (8)	-0.1156 (9)	0.2931	0.092 (5)
$\mathrm{Na}(92)$	0.9986 (8)	0.1079 (7)	0.2092 (3)	0.076 (4)
$\mathrm{Na}(93)$	0.8185 (6)	-0.0450 (6)	0.2519 (4)	0.088 (3)
$\mathrm{Na}(61)$	0.9027 (8)	0.0317 (8)	0.0250 (4)	0.079 (4)
$\mathrm{Na}(62)$	0.8836 (9)	-0.0881 (9)	-0.0215 (5)	0.114 (6)
$\mathrm{O}(91)$	0.8773 (11)	-0.0059 (11)	0.2981 (5)	0.061 (6)
O(92)	0.8786 (12)	-0.0020 (12)	$0 \cdot 2057$ (6)	0.073 (7)
O(93)	0.8203 (10)	-0.1673 (10)	0.2520 (7)	0.090 (6)
O(61)	0.9703 (12)	-0.1262 (11)	-0.0282 (5)	0.068 (7)
O(62)	0.8700 (14)	-0.0959 (14)	0.0300 (6)	0.101 (9)
C(91)	0.8375 (18)	0.0015 (18)	0.3252 (7)	0.123 (14)
C(911)	0.7574 (22)	-0.0101 (24)	0.3125 (10)	$0 \cdot 180$ (19)
C(912)	0.8159 (22)	-0.0693 (19)	0.3465 (9)	0.143 (17)
C(913)	0.8865 (19)	0.0781 (17)	0.3439 (8)	0.134 (15)
C(92)	0.8315 (16)	0.0103 (17)	0.1826 (7)	$0 \cdot 106$ (14)
C(921)	0.7733 (19)	0.0331 (19)	0.1975 (9)	$0 \cdot 120$ (13)
C(922)	0.8830 (21)	0.0787 (20)	0.1595 (10)	0.157 (19)
C(923)	0.7858 (16)	-0.0691 (15)	$0 \cdot 1650$ (7)	0.076 (9)
C(93)	0.7574 (15)	-0.2503 (12)	0.2531 (7)	0.101 (9)
C(931)	0.7709 (20)	-0.3165 (18)	$0 \cdot 2424$ (8)	0.136 (13)
C(932)	0.7069 (32)	-0.2356 (37)	0.2301 (11)	0.336 (34)
C(933)	0.7207 (17)	-0.2765 (17)	0.2851 (7)	0.096 (10)
C(61)	0.9441 (15)	-0.1967 (13)	-0.0472 (6)	0.057 (9)
C(611)	0.9461 (18)	-0.2649 (17)	-0.0302 (8)	$0 \cdot 108(13)$
C(612)	0.9996 (23)	-0.1700 (23)	-0.0751 (9)	$0 \cdot 189$ (19)
C(613)	0.8563 (18)	-0.2280 (29)	-0.0551 (11)	$0 \cdot 224$ (25)
C(62)	0.8063 (19)	-0.1485 (19)	0.0508 (8)	$0 \cdot 180$ (21)
C(621)	0.7417 (26)	-0.1998 (26)	0.0263 (10)	0.206 (22)
C(622)	0.7852 (21)	-0.0959 (19)	0.0694 (8)	0.123 (13)
C(623)	0.8299 (21)	-0.2017 (21)	0.0669 (9)	$0 \cdot 137$ (16)

Table 2. Selected bond lengths (\AA) and angles (${ }^{\circ}$)
Numbers in parentheses are e.s.d.'s associated with the least significant digits. A prime denotes an atom generated by the triad.

$\mathrm{Na}(61)-\mathrm{O}(62) \quad 2.24$	2.24 (3)	$\mathrm{Na}(92)-\mathrm{O}\left(93^{\prime}\right) \quad 2.25$ (3)	
$\mathrm{Na}(61)-\mathrm{O}\left(62^{\prime}\right) \quad 2.32$	2.32 (3)	$\mathrm{Na}(92)-\mathrm{O}(92) \quad 2.24$	2.24 (2)
$\mathrm{Na}(61)-\mathrm{O}\left(61^{\prime}\right) \quad 2.31$	2.31 (3)	$\mathrm{Na}(92)-\mathrm{O}\left(92^{\prime}\right) \quad 2.23$ (2)	2.23 (2)
$\mathrm{Na}(62)-\mathrm{O}(62) \quad 2.24$	2.24 (3)	$\mathrm{Na}(93)-\mathrm{O}(91) \quad 2.24$	2.24 (2)
$\mathrm{Na}(62)-\mathrm{O}(61) \quad 2.17$	2.17 (2)	$\mathrm{Na}(93)-\mathrm{O}(93) \quad 2.39$ (2)	2.39 (2)
$\mathrm{Na}(62)-\mathrm{O}\left(61^{\prime}\right) \quad 2.14$	$2 \cdot 14$ (2)	$\mathrm{Na}(93)-\mathrm{O}(92) \quad 2.26$	2.26 (2)
$\mathrm{Na}(91)-\mathrm{O}(91) \quad 2.26$	$2 \cdot 26$ (2)	$\mathrm{O}(x y)-\mathrm{C}(x y) \quad 1.45$	${ }^{1.45}$ (1)**
$\mathrm{Na}(91)-\mathrm{O}\left(91^{\prime}\right) \quad 2.28$	2.28 (2)	$\mathrm{C}(x y)-\mathrm{C}(x y n) \quad 1.54$ (5)*	
$\mathrm{Na}(91)-\mathrm{O}(93) \quad 2.15$	$2 \cdot 15$ (3)		
$\mathrm{O}(91)-\mathrm{Na}(91)-\mathrm{O}\left(91^{\prime}\right)$	125 (1)	$\mathrm{Na}(91)-\mathrm{O}(93)-\mathrm{Na}\left(92^{\prime}\right)$	111 (1)
$\mathrm{O}(91)-\mathrm{Na}(91)-\mathrm{O}(93)$	101 (1)	$\mathrm{Na}(91)-\mathrm{O}(93)-\mathrm{Na}(93)$	82 (1)
$\mathrm{O}\left(91^{\prime}\right)-\mathrm{Na}(91)-\mathrm{O}(93)$	118 (1)	$\mathrm{Na}\left(92^{\prime}\right)-\mathrm{O}(93)-\mathrm{Na}(93)$	79 (1)
$\mathrm{O}(92)-\mathrm{Na}(92)-\mathrm{O}\left(92^{\prime}\right)$	130 (1)	$\mathrm{O}(62)-\mathrm{Na}(61)-\mathrm{O}\left(62^{\prime}\right)$	119 (1)
$\mathrm{O}\left(92^{\prime}\right)-\mathrm{Na}(92)-\mathrm{O}\left(93^{\prime}\right)$	101 (1)	$\mathrm{O}(62)-\mathrm{Na}(61)-\mathrm{O}\left(61^{\prime}\right)$	95 (1)
$\mathrm{O}(92)-\mathrm{Na}(92)-\mathrm{O}\left(93^{\prime}\right)$	113 (1)	$\mathrm{O}\left(62^{\prime}\right)-\mathrm{Na}(61)-\mathrm{O}\left(61^{\prime}\right)$	95 (1)
$\mathrm{O}(91)-\mathrm{Na}(93)-\mathrm{O}(92)$	126 (1)	$\mathrm{O}\left(61^{\prime}\right)-\mathrm{Na}(62)-\mathrm{O}\left(61^{\prime}\right)$	126 (1)
$\mathrm{O}(91)-\mathrm{Na}(93)-\mathrm{O}(93)$	94 (1)	$\mathrm{O}\left(61^{\prime}\right)-\mathrm{Na}(62)-\mathrm{O}(62)$	99 (1)
$\mathrm{O}(92)-\mathrm{Na}(93)-\mathrm{O}(93)$	96 (1)	$\mathrm{O}(61)-\mathrm{Na}(62)-\mathrm{O}(62)$	101 (1)
$\mathrm{Na}(93)-\mathrm{O}(91)-\mathrm{Na}(91)$	83 (1)	$\mathrm{Na}\left(62^{\prime}\right)-\mathrm{O}(61)-\mathrm{Na}(62)$	110 (1)
$\mathrm{Na}(93)-\mathrm{O}(91)-\mathrm{Na}\left(91^{\prime}\right)$	110 (1)	$\mathrm{Na}\left(62^{\prime}\right)-\mathrm{O}(61)-\mathrm{Na}\left(61^{\prime}\right)$	83 (1)
$\mathrm{Na}(91)-\mathrm{O}(91)-\mathrm{Na}\left(91^{\prime}\right)$	114 (1)	$\mathrm{Na}(62)-\mathrm{O}(61)-\mathrm{Na}\left(61^{\prime}\right)$	82 (1)
$\mathrm{Na}\left(92^{\prime}\right)-\mathrm{O}(92)-\mathrm{Na}(92)$	109 (1)	$\mathrm{Na}(61)-\mathrm{O}(62)-\mathrm{Na}(62)$	83 (1)
$\left.\mathrm{Na}(92)^{\prime}\right)-\mathrm{O}(92)-\mathrm{Na}(93)$	83 (1)	$\mathrm{Na}(61)-\mathrm{O}(62)-\mathrm{Na}\left(61^{\prime}\right)$	119 (1)
$\mathrm{Na}(92)-\mathrm{O}(92)-\mathrm{Na}(93)$	113 (1)	$\mathrm{Na}(62)-\mathrm{O}(62)-\mathrm{Na}\left(61^{\prime}\right)$	81 (1)

* Constrained bond lengths; these are average values and the e.s.d. is a measure of the deviation of the individual lengths from the average. (The labelling scheme is defined in Table 1.)
factors, weights proportional to $1 / \sigma^{2}(F)$, individual isotropic temperature factors and the following constraints. The fifteen distances $[\mathrm{C}(x y)-\mathrm{C}(x y n)]^{*}$ were fixed at $1.54 \AA$; the two sets of distances $[\mathrm{O}(x y)-\mathrm{C}(x y)$; five distances] and $[\mathrm{C}(x y 1)-\mathrm{C}(x y 2)$, $\mathrm{C}(x y 2)-\mathrm{C}(x y 3), \mathrm{C}(x y 3)-\mathrm{C}(x y 1) ; 15$ distances] were each assigned common variable distances d_{1} and d_{2} respectively. These three constraints effectively average the geometries of all five independent tert-butoxy groups in the structure. This refinement converged with $R=0 \cdot 170, R^{\prime}=\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|=0 \cdot 142, d_{1}=$ 1.45 (1), $d_{2}=2.51$ (2) \AA. Final coordinates and the resulting bond lengths are in Tables 1 and $2 . \dagger$ All calculations were performed with SHELX 76 (Sheldrick, 1976).

Discussion. The crystal and molecular structure are illustrated in Figs. 1 and 2. There are no significant differences between bond lengths and angles in the $R 3 c$ and $C c$ structures. In $R 3 c$, \cdots nonamer-hexamernonamer \cdots chains run parallel to the crystal c axis; the centre of each discrete nonameric and hexameric unit lies on a triad axis. The high R factor $(0 \cdot 170)$ is actually slightly better than that achieved for the Cc structure (0.203 with isotropic temperature factors)

[^1]

Fig. 1. Part of the crystal structure of sodium tert-butoxide projected onto the $a b$ plane. Each of the four hexameric and three nonameric units depicted here is part of a \cdots nonamer-hexamernonamer \cdots chain running perpendicular to the page. The unit cell is outlined. In this diagram, O and Na atoms overlie each other (see Fig. 2).

Fig. 2. Stereoscopic view of one \cdots nonomaer-hexamernonamer \cdots chain. The trigonal c axis $(43.335 \AA$) runs from the centre of the bottom hexamer to the centre of the top hexamer.
and reflects the considerable disorder associated with the tert-butoxy groups. Molecular motion of tertbutoxy groups has previously been observed (Weiss, Alsdorf, Kühr \& Grützmacher, 1968) in a ${ }^{1} \mathrm{H}$ wide-line NMR study of the compound $\left[\left(\mathrm{CH}_{3}\right) \mathrm{COK}\right]_{4}$. In this case, the NMR results above 243 K indicate that rotation of the tert-butoxy group as a whole is coupled with rotation of individual methyl groups.

References

Greiser, T. \& Weiss, E. (1977). Chem. Ber. 110, 3388-3396.
Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.
Weiss, E., Alsdorf, h., Kühr, H. \& Grützmacher, h.J. (1968). Chem. Ber. 101, 3777-3786.

Acta Cryst. (1982). B38, 2253-2256

Chloro[3-(dimethylamino)-1-formyl-2,2-dimethylpropyl-C,N]-[4-(dimethylamino)pyridine]palladium(II)

By George Ferguson,* Alan J. McAlees, Robert McCrindle and Barbara L. Ruhl
Guelph-Waterloo Centre for Graduate Work in Chemistry, Guelph Campus, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

(Received 21 January 1982; accepted 19 March 1982)

Abstract

Pd}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}\right) \mathrm{Cl}, \quad \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{ClN}_{3}-\) OPd, $M_{r}=406 \cdot 2$, monoclinic, $P 2_{1} / n, a=10 \cdot 762$ (1), $b=23.994$ (5), $c=6.989$ (1) $\AA, \beta=98.46$ (2) ${ }^{\circ}$, $U=1785.2 \AA^{3}, D_{c}=1.51 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu(\mathrm{Mo} K \alpha)=29.0 \mathrm{~cm}^{-1}, F(000)=832$, space group determined uniquely from systematic absences: $h 0 l, h+l=2 n+1 ; 0 k 0, k=2 n+1$. $R=0.028$ for 2449 reflections [with $I>3 \sigma(I)$] measured by diffractometer. The palladium atom has a slightly distorted square-planar configuration in a five-membered chelate ring that has an envelope conformation. Principal bond lengths are $\mathrm{Pd}-\mathrm{Cl}($ trans to C$) 2.413(1), \mathrm{Pd}-\mathrm{C}(1) \quad 2.052(4), \quad \mathrm{Pd}-\mathrm{N}(1)$ 2.086 (3), and $\operatorname{Pd}-\mathrm{N}(2) 2.038$ (3) \AA. The X-ray data establish that there is a significant interaction between the palladium and aldehyde carbon $\mathrm{C}(5), \mathrm{Pd} \cdots$ $\mathrm{C}(5) 2.664(4) \AA, \quad \mathrm{C}(5)-\mathrm{C}(1)-\mathrm{Pd} 97.3(2)^{\circ}$. The $\mathrm{Pd}-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{O}$ torsion angle is $96.0(5)^{\circ}$.

Introduction. We have previously reported (Alyea, Dias, Ferguson, McAlees, McCrindle \& Roberts, 1977) the synthesis and X-ray structure analysis of di-μ-chloro-bis [1 -formyl-2,2-dimethyl-3-(dimethylamino)-propyl- C, N]dipalladium(II) (1), in which there appears to be a direct interaction between the palladium atom and the carbon atom of the formyl group. Interactions of this type have been discussed (Green, 1968; Pannell, Cassias, Crawford \& Flores, 1976) in

[^2]terms of a direct overlap of metal d orbitals with π orbitals of the carbonyl function. Alternatively, a $\sigma-\pi$ conjugative interaction of the $\mathrm{Pd}-\mathrm{C}$ bond with the carbonyl group could be invoked to explain the properties of such systems. The latter description has been widely applied in the rationalization of the spectral properties and reactivities of organometallic derivatives of non-transition metals (Meyer, Gorrichon-Guigon \& Maroni, 1980). In the course of an investigation (McCrindle \& McAlees, 1982) of the influence of changes in the palladium coordination sphere on this interaction, a series of compounds related to (1), and including the title compound (2), has now been

(1)

(2)

[^0]: *Average of the three axes $[010]=19.378,\left[\frac{1}{22} 1\right]=19.393$ and $\left[\frac{1}{2} \frac{1}{1} \overline{1}\right]=19.393 \AA$ in the $C c$ latice.

[^1]: * The atom labelling scheme is defined in Table 1.
 \dagger A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36807 (11 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * To whom correspondence should be addressed.

